Taxis azules y amarillos

Para solucionar un enigma, hay que considerar todos los factores en juego

 

Habitualmente, cada vez que uno habla de Kahneman y Tversky [1], la referencia inexorablemente termina en Kahneman. Esto sucede por varias razones. La primera, es que Tversky falleció y no sigue produciendo. Kahneman todavía vive y ya tiene 86 años. Los dos son productos de universidades israelíes pero hicieron una buena parte de sus carreras en Estados Unidos, más precisamente en Stanford, cerca de San Francisco.

Pero además Tversky falleció en el año 1996, más de 22 años atrás. En algún lugar, como no habla por televisión, no lo invitan a programas de radio, no da más conferencias, no escribe más artículos, no publica, su lugar en la historia está destinado a ser “el que aparece siempre junto con Daniel Kahneman”. Encima, a Kahneman le dieron el Premio Nobel (de Economía), y eso, termina por derrotar al pobre Tversky. Y Tversky no comparte el premio con Kahneman, porque la Academia no otorga premios post-mortem. Listo. Final para Tversky.

Un momento. No quisiera que se interprete como que estoy diciendo que Kahneman no merece el lugar que tiene, ni el reconocimiento que se le hace constantemente. ¡Para nada! Es hiper-merecido y todos los laureles los tiene bien ganados. Pero lo que no quisiera hacer, es ignorar la tarea ‘del otro’, o ‘minimizarla’ sencillamente porque no aparece en los ‘medios’, por ponerlo de alguna manera

Hace un tiempo, Keith Devlin, una de las personas más prolíficas en la divulgación de la matemática, sin ninguna duda un referente esencial de esta época, compartía el claustro de profesores e investigadores en la Universidad de California, en Stanford. Es decir, era uno de sus pares. Casi inmediatamente después de su fallecimiento, Devlin escribió un artículo contando alguno de los aportes de Tversky, y quiero aprovechar para reproducir la idea. Acá va.

Suponga que usted es miembro de un jurado que está analizando un caso de un accidente que se produjo una noche en alguna ciudad. El conductor de un taxi atropelló a una persona, y se escapó. Toda la evidencia que había sobre el caso, y muy en particular sobre la compañía de taxis, se basaba en la palabra de un señor de edad avanzada —superaba los 80 años— que había visto el accidente desde la ventana de su departamento que estaba ubicado a unos 30 metros del impacto. Este señor había declarado que él había visto como un taxi de color azul atropelló al peatón.

Algunas observaciones. La ciudad en donde sucedieron los hechos tiene solamente dos compañías de taxis: una con coches azules y otro de color amarillo. La investigación que hicieron los abogados del peatón atropellado resultó en que en la noche del episodio, el 85% de los taxis que estaban en servicio eran de color amarillo y el 15% restante eran azules.

La compañía de taxis que era la otra parte en el juicio, había pedido que se hiciera un estudio sobre las condiciones en las que estaba la visión del señor que era testigo. El resultado, después de un test exhaustivo hecho por oftalmólogos, había determinado que el señor estaba en condiciones de distinguir un taxi de color azul sobre uno amarillo en un 80% de los casos en el que se le había planteado el mismo escenario. Dicho todo esto, usted… sí, usted, si fuera miembro del jurado… ¿qué decidiría?

Naturalmente, la primera reacción que yo tendría es decir: basado en la evidencia del testigo que demostró que en cuatro de cinco veces que se le plantea un caso de ese tipo (el 80% en cuestión), estuvo en condiciones de discernir el color del taxi, yo votaría en contra de la compañía de taxis azules. Si me apuraran, explicaría que las chances de que la compañía azul fuera la responsable son de cuatro sobre cinco, ya que son las posibilidades de que el testigo eligiera correctamente en una ocasión cualquiera.

Sin embargo, la realidad es otra¡y bien diferente! Acompáñeme por acá y verá que, sorprendentemente, la probabilidad de que el transeúnte hubiera sido atropellado por un taxi de color azul ronda 0,41 o sea, el 41%... es decir, ¡menos de la mitad! O sea, es más probable que el peatón haya sido atropellado por un taxi de color amarillo más veces que por un taxi de color azul. ¿Por qué?

El error que uno cometería si elige rápidamente la compañía azul, es que para hacerlo, debe ignorar completamente un dato muy relevante: basado en los datos que se tienen, cualquiera haya sido el taxi que hubiera estado en la zona, la enorme probabilidad es que haya sido de color amarillo.

Por otro lado, supongamos que el testigo no hubiera podido distinguir el color del auto que atropelló al peatón, pero hubiera estado 100% seguro de que fue un taxi, entonces, la probabilidad de que hubiera sido un taxi de color amarillo habría sido de un 85% ya que esa es la proporción de taxis que estaban en ese momento en esa zona.

Luego, y esto es determinante, antes de que el testigo diga nada sobre el color, las chances de que el taxi hubiera sido azul era realmente muy bajas, de solo un 15%. En particular, esta probabilidad es la que se llama previa, basada solamente en como son las cosas si no hubiera habido ningún testigo que atestiguara sobre lo que pasó. Cuando el testigo habla, entonces la probabilidad de que sea un auto de color azul (que era de un 15%) se incrementan fuertemente, ¡pero no hasta el punto de convertirse en un 80% como uno tiene la tentación de concluir!

Lo que hay que hacer es combinar ambos factores: lo que pasaba antes de que hubiera un testigo, y cuánto afecta lo que el testigo dice cuando habla.

Le propongo que ahora, más allá de que usted me crea o no, fíjese en estas cuatro figuras y la explicación de lo que significa cada una de ellas. Si sigue la cadena de razonamientos, verá que la probabilidad de que el auto que haya visto el testigo sea azul, es un ‘poquito’ mayor que 0,41. Es decir, hay un ‘poco’ más de un 41% de que el taxi haya sido de color azul. ¿No le parece interesante que esto suceda? ¿Qué hubiera dicho usted de haber sido jurado en el juicio?

 

 

 

 

 

 

[1] Daniel Kahneman es psicólogo y además matemático/economista. En marzo del 2020 cumplió 86 años. Kahneman recibió el premio Nobel en Economía en el año 2002. Amos Tversky fue también psicólogo pero dedicado a la economía. Tversky falleció cuando recién había cumplido 59 años. Le recomiendo dos libros en particular (sobre el estudio del comportamiento humano). Pensar rápido, pensar despacio, por Daniel Kahneman. El otro, se llama Deshaciendo errores, y lo escribió Michael Lewis. Si le interesa este tipo de temas, estos dos libros son esenciales para entender, o mejor dicho, para tratar de entendernos, y detectar nuestras irracionalidades

 

 

 

 

--------------------------------

Para suscribirte con $ 1000/mes al Cohete hace click aquí

Para suscribirte con $ 2500/mes al Cohete hace click aquí

Para suscribirte con $ 5000/mes al Cohete hace click aquí